MATH 512, FALL 14 COMBINATORIAL SET THEORY WEEK 10

Let $\kappa \leq \lambda$ be regular cardinals. $\mathcal{P}_{\kappa}(\lambda)$ is the set of all $x \subset \lambda$ with $|x| < \kappa$. A set $C \subset \mathcal{P}_{\kappa}(\lambda)$ is club if

- unboundedness: for every $x \in \mathcal{P}_{\kappa}(\lambda)$, there is $y \in C$ with $x \subset y$,
- closed: if $\tau < \kappa$ and $\langle x_i \mid i < \tau \rangle$ are elements in C such that i < k implies $x_i \subset x_k$, then $\bigcup_{i < \tau} x_i \in C$.

A set is stationary in $\mathcal{P}_{\kappa}(\lambda)$ if it meets every club.

Given $\langle A_{\alpha} \mid \alpha < \lambda \rangle$ with every $A_{\alpha} \subset \mathcal{P}_{\kappa}(\lambda)$, their diagonal intersection is $\triangle_{\alpha < \lambda} A_{\alpha} := \{ x \in \mathcal{P}_{\kappa}(\lambda) \mid x \in \bigcap_{\alpha \in x} A_{\alpha} \}.$

The following two lemmas are generalizations of the case for club filters on κ . The proof is left as an exercise (you can also see Chapter 8 of Jech).

Lemma 1. The club filter on $\mathcal{P}_{\kappa}(\lambda)$ is κ -complete and closed under diagonal intersections.

Lemma 2. (Fodor) Suppose that S is a stationary subset of $\mathcal{P}_{\kappa}(\lambda)$ and $f: S \to \lambda$ is regressive i.e for every $x \in S$, $f(x) \in x$. Then there is a stationary $T \subset S$, such that f is constant on T.

Definition 3. $U \subset \mathcal{P}(\mathcal{P}_{\kappa}(\lambda))$ is called a normal measure on $\mathcal{P}_{\kappa}(\lambda)$ if:

- (1) U is a nonprincipal ultrafilter;
- (2) U is κ -complete i.e. whenever $\langle A_i \mid i < \tau \rangle$, $\tau < \kappa$ are sets in U, then so is $\bigcap_{i < \tau} A_i$;
- (3) normality: whenever $\langle A_{\alpha} \mid \alpha < \lambda \rangle$, are sets in U, then so is their diagonal intersection, $\triangle_{\alpha < \lambda} A_{\alpha}$.

An equivalent condition for normality is that for every $S \in U$ and regressive function $f: S \to \lambda$, there is $A \subset S$, $A \in U$, such that f is constant on A.

Definition 4. A cardinal κ is λ -supercompact if there is a normal measure on $\mathcal{P}_{\kappa}(\lambda)$; κ is supercompact if it is λ -supercompact for every λ .

Theorem 5. A cardinal κ is λ -supercompact iff there is an elementary embedding $j: V \to M$ with critical point κ such that $j(\kappa) > \lambda$, $M^{\lambda} \subset M$.

Proof. For the first direction, suppose that U is a normal measure on $\mathcal{P}_{\kappa}(\lambda)$. Let $j: V \to Ult(V, U)$ be given by $j(a) = [c_a]_U$. Here c_a is the constant function on $\mathcal{P}_{\kappa}(\lambda)$ with value a. Then, $\phi(a_1, ..., a_n)$ holds in V iff $\{x \in \mathcal{P}_{\kappa}(\lambda) \mid \phi(c_{a_1}(x), ..., c_{a_n}(x))\} = \mathcal{P}_{\kappa}(\lambda) \in U$ iff (by Los), $M \models \phi(j(a_1), ...j(a_n))$. So, j is elementary. Note that since U is κ -complete, the ultrapower Ult(V, U) is wellfounded, so we can identify it with its transitive collapse.

Claim 6. For all $\alpha < \kappa$, $j(\alpha) = \alpha$.

Proof. By induction on $\alpha < \kappa$. Suppose that $\beta < \kappa$, and for all $\alpha < \beta$, $j(\alpha) = [c_{\alpha}]_{U} = \alpha$. If $\beta = \alpha + 1$, by elementarity, $j(\beta) = j(\alpha) + 1 = \alpha + 1$. Suppose that β is limit. First, for every $\alpha < \beta$, $\alpha = [c_{\alpha}] <_{U} [c_{\beta}]_{U}$, so $\beta \leq [c_{\beta}]_{U}$. Also, if $[f]_{U} < [c_{\beta}]_{U}$, then $\{x \mid f(x) < \beta\} \in U$. Since U is κ -complete, for some $\alpha < \beta$, $\{x \mid f(x) = \alpha\} \in U$, i.e. $[f]_{U} = [c_{\alpha}]_{U}$. So $[c_{\beta}]_{U} = \sup_{\alpha < \beta} [c_{\alpha}] = \sup_{\alpha < \beta} \alpha = \beta$.

Note that $X := \{x \mid \kappa \cap x \in \kappa\}$ is a measure one set; for $x \in X$, write $\kappa_x := \kappa \cap x$.

Claim 7. $\kappa = [x \mapsto \kappa_x]_U < j(\kappa)$.

Proof. If $\gamma < \kappa$, then by the above claim $\gamma = [c_{\gamma}]$. Since $\{x \mid \gamma < \kappa_x\} \in U$, we have that $\gamma < [x \mapsto \kappa_x]_U$. I.e. $\kappa \leq [x \mapsto \kappa_x]_U$. On the other hand if $[g]_U < [x \mapsto \kappa_x]_U$, then for almost all $x, g(x) < \kappa_x$. By normality, there is some $\gamma < \kappa$, such that for almost all $x, g(x) = \gamma$. So, $[x \mapsto \kappa_x]_U \leq \kappa$.

It follows that the critical point of j is κ .

Claim 8. j" $\lambda = [x \mapsto x]_U$.

Proof. Let $\gamma < \lambda$. Since $\{x \mid \gamma \in x\} \in U$, we have that $j(\gamma) \in [x \mapsto x]_U$; i.e. $j"\lambda \subseteq [x \mapsto x]_U$.

For the other direction, let $[g] \in [x \mapsto x]_U$. Then for almost all $x, g(x) \in x$, so by normality, there is some $A \in U$, such that g is constant on A. Say $\gamma < \lambda$ is such that $g(x) = \gamma$ for all $x \in A$. That means that $[g] = j(\gamma)$; i.e. $[g] \in j$ " λ .

Claim 9. $\lambda = [x \mapsto o.t.(x)]_U < j(\kappa)$.

Proof. Let $[g]_U = \lambda$. Since $M \models [g] = \lambda = o.t.(j"\lambda) = o.t.([x \mapsto x]_U)$, by Los, we have that for almost all x, g(x) = o.t.(x). So, $\lambda = [x \mapsto o.t.(x)]_U < j(\kappa)$.

By a similar argument, for $\kappa < \tau < \lambda$, we have $\tau = [x \mapsto o.t.(x \cap \tau)]$; $\sup(j"\lambda) = [x \mapsto \sup(x)]_U$.

The last thing to show is that $M^{\lambda} \subset M$. For that, suppose that $\langle [f_i] | i < \lambda \rangle$ is a sequence of elements in M. Let $f : \mathcal{P}_{\kappa}(\lambda) \to V$ be

$$f(x) = \langle f_i(x) \mid i \in x \rangle.$$

Then $[f] \in M$. Also since every f(x) is a sequence of length o.t.(x), by Los's theorem, in M, [f] is a sequence of length λ . For every x, let $i_x := o.t.(x \cap i)$. By the above remark, for every $i < \lambda$, $[x \mapsto i_x]_U = i$.

In V, $\{x \mid \text{ the } i_x - \text{th element of } f(x) = f_i(x)\} = \{x \mid i \in x\} \in U$. So, by Los, the *i*-th element of the sequence [f] is exactly $[f_i]$. It follows that $[f] = \langle [f_i] \mid i < \kappa \rangle \in M$.

For the other direction of the theorem, fix an embedding $j:V\to M$ as in the assumption. Let

$$U := \{ X \subset \mathcal{P}_{\kappa}(\lambda) \mid j"\lambda \in j(X) \}.$$

It is straightforward by elementarity to check that U is an ultrafilter. For κ -completeness: suppose that $\tau < \kappa$ and $\langle X_{\alpha} \mid \alpha < \tau \rangle$ are sets in U. Then for every α , j" $\lambda \in j(X_{\alpha})$. Since $j(\tau) = \tau$, we have that $j(\langle X_{\alpha} \mid \alpha < \tau \rangle) = \langle j(X_{\alpha}) \mid \alpha < \tau \rangle$. Then j" $\lambda \in \bigcap_{\alpha < \tau} j(X_{\alpha}) = j(\bigcap_{\alpha < \tau} X_{\alpha})$, and so $\bigcap_{\alpha < \tau} X_{\alpha} \in U$.

For normality, suppose that $f: \mathcal{P}_{\kappa}(\lambda) \to \lambda$ is a regressive function. Then $X = \{x \mid f(x) \in x\} \in U$, and so $j"\lambda \in j(X)$. It follows that $jf(j"\lambda) \in j"\lambda$, so for some $\gamma < \lambda$, $jf(j"\lambda) = j(\gamma)$. It follows that $Y := \{x \mid f(x) = \gamma\} \in U$, since $j"\lambda \in j(Y)$.

Lemma 10. Let κ be λ -supercompact and U be a normal measure on $\mathcal{P}_{\kappa}(\lambda)$. Let $j: V \to M$ be the ultrapower embedding $j = j_U$. Then for every $f: \mathcal{P}_{\kappa}(\lambda) \to V$, $[f]_U = jf(j^*\lambda)$.

Proof. As shown above, $[x \mapsto x]_U = j$ " λ . Now for any $f : \mathcal{P}_{\kappa}(\lambda) \to V$, $[g] \in [f]$ iff $\{x \mid g(x) \in f(x)\} \in U$ iff by Los, $[g] \in [x \mapsto f]([x \mapsto x]) = jf(j$ " λ). Also note that for any $X \subset \mathcal{P}_{\kappa}(\lambda)$, we have that $X \in U$ iff $[x \mapsto x]_U \in j(X)$ iff j" $\lambda \in j(X)$.

Let $j: V \to M$ be an elementary embedding with critical point κ , $j(\kappa) > \lambda$, $M^{\lambda} \subset M$. Define $U := \{X \subset \mathcal{P}_{\kappa}(\lambda) \mid j"\lambda \in j(X)\}$ and $k: Ult(U, V) \to M$ by

$$k([f]_U) = jf(j"\lambda).$$

Then k is elementary and $j = k \circ j_U$. (Here $j_U(a) = [c_a]_U$.)